 概要 現実世界の具体例をモデリングしながら、モデリングとシミュレーションに関する手法を講義する。主に乱数を用いた離散シミュレーションを扱うので、疑似乱数の生成方法や性質についても講義する。演習の時間を設け、講義した内容を実際にプログラミングし、実行結果を考察する。演習の結果はレポートにまどめる。 科目目標(到達目標) 現実世界の現象をコンピュータ上でモデリングし、シミュレートする技法を習得する。主な乱数発生アルゴリズム(平均採中法、合同法、混合合同法、累積合同法、加法合同法)とその特徴と検定方法について理解する。 教科書 習りとその特徴と検定方法について理解する。 教科書 20 第2回 簡単なシミュレーションのグログラミング演習 10 第 2回 簡単なシミュレーションのブログラミング演習 3 4回 乱数について(乱数の検定に、2 %検定、ボーカ検定)第 5 5回 乱数について(乱数の検定に、2 %検定,ボーカ検定)第 6回 乱数について(乱数の検定、2 %検定,ボーカ検定)第 7回 乱数が発生に関するプログラミング演習 3 8 9回 抗シについて(さまざまな分布の乱数)第 6 6回 乱数について(さまざまな分布の乱数)第 9回 前数について(おまびまな分布の乱数)第 9回 前数の検定に関するプログラミング演習 5 9回 抗り行列のシミュレーション(基地理論)第 9回 持ち行列のシミュレーション(プログラミング演習 1 待ち行列のに関するプログラミング演習 1 停ち行列のに関するプログラミング演習 1 第 10回 連続系シミュレーション(オイラー法、ルンゲックタ法、連続系シミュレーションに関するプログラミング演習 1 第 15回 連続系シミュレーションに関するプログラミング演習 1 7 7 7 7 7 7 7 7 7 1 1 1 1 1 1 1 1 1	学 科 学 年	科目分類	計算機シミュレー ション [シミュ] Computer Simulation	講義必修	後期 1 単位	学習教育 目標 C	担当	鈴木茂樹 SUZUKI, Shigeki	
注水乱数発生アルゴリズム(平均採中法, 合同法, 混合合同法, 加法合同法)とその特徴と検定方法について理解する。	概要 を講義する.主に乱数を用いた離散シミュレーションを扱うので,疑似乱数の生成方法や 性質についても講義する.演習の時間を設け,講義した内容を実際にプログラミングし,								
器材等 評価の基準 と 方法 関連科目 第 1回 第 2回 簡単なシミュレーションの概説 簡単なシミュレーションの一が高さのでは、お釣りはいくら用意すればいいか) 第 3回 第 4回 乱数について(乱数の発生法) 第 5回 乱数について(乱数の検定、 χ²検定、ポーカ検定) 第 6回 乱数について(乱数の検定、 χ²検定、ポーカ検定) 第 7回 乱数について(乱数の検定、 χ²検定、ポーカ検定) 第 8回 第 8回 第 9回 待ち行列のシミュレーション(ブログラミング演習 第 9回 待ち行列のシミュレーション(ブログラミング演習 第 9回 第 510回 第 11回 特ち行列に関するプログラミング演習 I 第 11回 第 15回 8	│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │								
評価の基準と方法 関連科目 第 1回 コンピュータシミュレーションの概説 第 2回 簡単なシミュレーションの例(πを求める,お釣りはいくら用意すればいいか) 第 3回 簡単なシミュレーションのプログラミング演習 第 4回 乱数について(乱数の発生法) 第 5回 乱数について(お数の検定,χ²検定,ポーカ検定) 第 7回 乱数発生に関するプログラミング演習 第 8回 乱数の検定に関するプログラミング演習 第 8回 乱数の検定に関するプログラミング演習 第 9回 待ち行列のシミュレーション(基礎理論) 第 11回 待ち行列のシミュレーション(基礎理論) 第 11回 特ち行列に関するプログラミング演習 I 第 12回 第 15回 第 15回 連続系シミュレーション(オイラー法,ルンゲックタ法) 第 14回 連続系シミュレーションに関するプログラミング演習 I 第 15回 連続系シミュレーションに関するプログラミング演習 I 第 15回 第 15回 連続系シミュレーションに関するプログラミング演習 I	器材等	プリントなど							
接業計画 第 1回 コンピュータシミュレーションの概説 第 2回 簡単なシミュレーション例(π を求める,お釣りはいくら用意すればいいか) 第 3回 簡単なシミュレーションのプログラミング演習 第 4回 乱数について(乱数の発生法) 第 5回 乱数について(さまざまな分布の乱数) 第 6回 乱数について(乱数の検定,χ²検定,ポーカ検定) 第 7回 乱数発生に関するプログラミング演習 第 8回 乱数の検定に関するプログラミング演習 第 9回 待ち行列のシミュレーション(基礎理論) 第 10回 待ち行列のシミュレーション(ブログラミングの手法) 第 11回 待ち行列に関するプログラミング演習 I 第 12回 待ち行列に関するプログラミング演習 I 第 13回 連続系シミュレーション(オイラー法,ルンゲックタ法) 第 14回 連続系シミュレーションに関するプログラミング演習 「連続系シミュレーションに関するプログラミング演習 「東記録験	評価の基準 と 方法	レポート40%,定期試験40%,出席状況10%,受講態度10%として評価する.							
第10回 付5行列のグミュレーション(プログラミング) 第11回 待ち行列に関するプログラミング演習 II 第12回 待ち行列に関するプログラミング演習 II 第13回 連続系シミュレーション(オイラー法,ルンゲックタ法) 第14回 連続系シミュレーションに関するプログラミング演習 第15回 定期試験 オフィス 前期・水曜日午後 後期・木曜日午後				授業計	画				