Syllabus Id	syl-102575				
Subject Id	sub-102400510				
更新履歴	20100326新規				
授業科目名	流体力学 Fluid Dynamics				
担当教員名	松本祐子 MATSUMOTO Yuko				
	制御情報工学科4年生				
単位数	2学修単位(自学自習を含め90時間の学修をもって2単位とする)				
必修/選択	必修				
開講時期	通念				
授業区分	基礎・専門工学系				
授業形態	講義				
宝施提所	SAHR				

授業の概要(本教科の工学的、社会的あるいは産業的意味)

流体力学は、水、空気、その他の液体、気体を対象とする学問であり、家庭用から産業用まで多種多様な機械、システムの設計・解析に応用される。ここでは、流体の性質及び水力学・流 **準備学習**(この授業を受講するときに前提となる知識)

力学(力、トルク、動力、慣性モーメント)、三角関数、微分、積分

		Weight	目標	説明
学習・教育目標			Α	工学倫理の自覚と多面的考察力の養成
			В	社会要請に応えられる工学基礎学力の養成
		0	С	工学専門知識の創造的活用能力の養成
	育目標		D	国際的な受信・発信能力の養成
			E	産業現場における実務への対応能力と、自覚的に自己研鑚を継続できる能力の養成

C:工学的な解析・分析力、及びそれらを創造的に統合する能力

学習・教育目標の達成度検査

- 1. 該当する学習・教育目標についての達成度検査を、年度末の目標達成度試験を持って行う。
- 2. プログラム教科目の修得と、目標達成度試験の合格を持って当該する学習・教育目標の達成とする。
- 3.目標達成度試験の実施要領は別に定める

授業目標

本の主要 流体静力学では、圧力の性質を理解し、静水圧を計算できること。 流体運動の基礎理論では、ベルヌーイの定理、連続の式を理解し、計算できること。また、運動量の法則を理解できること。 粘性流体の力学では層流、乱流、レイノルズ数、境介層の概念を理解できること。

管路と開きょでは、管路の損失の計算ができ、開きょの流量と流速の計算ができること。

抗力と揚力では、その発生メカニズムが理解できること。

授業計画(プロ	コグラム授業は原則としてプログラ	ム教員が自由に参観できますが、参観欄に×印がある回は参観できません。)	
П	メインテーマ	サブテーマ	参観
第1回		授業概要・目標、スケジュール、評価方法と基準、等の説明 1. 流体の	
第2回	流体の性質	2. 密度、体積弾性係数、粘性	
第3回	流体の性質	3. 粘性、演習問題	
第4回	流体静力学	1. 圧力	
第5回	流体静力学	2. 重力の場で静止している流体	
第6回	流体静力学	3. 圧力計	
第7回	流体静力学	4. 固体壁に働く流体のカ	
第8回	前期中間試験		
第9回	流体静力学	5. 浮力、強制回転運動、演習問題	
第10回	流体運動の基礎理論	1. 流線、連続の式	
第11回	流体運動の基礎理論	2. ベルヌーイの定理	
第12回	流体運動の基礎理論	3. ベルヌーイの定理の応用 1	
第13回	流体運動の基礎理論	4. ベルヌーイの定理の応用2、演習問題	
第14回	流体運動の基礎理論	5. キャビテーション	
第15回	前期期末試験		
第16回	流体運動の基礎理論	6. 運動量の法則 1	
第17回	流体運動の基礎理論	7. 運動量の法則 2	
第18回	流体運動の基礎理論	8. 運動量の法則の応用、演習問題	
第19回	粘性流体の流れ	1. 平行二面間の層流	
第20回	粘性流体の流れ	2. 円管内の層流、レイノルズ数	
第21回	粘性流体の流れ	3. 乱流の速度分布	
第22回	粘性流体の流れ	4. 境界層	
第23回	後期中間試験		
第24回	管路	1. 円管における圧力損失	
第25回	管路	2. 円形以外の管摩擦、管路の損失	
第26回	管路	3. 管路における諸損失	
第27回	開きょ	1. 開きょの流速と流量、開きょの最良断面形状	
第28回	抗力と揚力	1. 物体に働く力	
第29回	抗力と揚力	2. 揚力	
第30回	学年末試験		

課題 自学自習課題として適宜提出させる。

出典:教科書章末問題/ハンドアウトとして授業終了時に配布

提出期限:出題した次の週 提出場所:授業開始直後の教室、

- : 月、火、木、金曜日の16:30~17:15。これ以外でも教員室に在室時は質問に応じることはできる。 オフィスアワ

評価方法と基準

評価方法:

▼■ガム・ 学習目標に掲げた能力が身についたかどうかを、各期の中間試験と期末試験で筆頭試験を行い約70%の重みで成績に反映する。それに併せて、理解を深めるために行う授業中の小課題演 習および自学自習課題の提出レポートを約30%の重みで成績に反映する。

評価基準:

前期試験30%, 後期試験40%、課題レポート30%

教科書等	水力学・流体力学、市川常雄 者、(朝倉書店)、¥3,570					
先修科目						
関連サイトの						
授業アンケー	板書を丁寧に行う。					
借金	1.試験や課題レポート等は、JABEE 、大学評価・学位授与機構、文部科学省の教育実施検査に使用することがあります。					
	2.授業参観されるプログラム教員は当該授業が行われる少なくとも1週間前に教科目担当教員へ連絡してください。					