Sheet1

Syllabus Id	syl101468		
Subject Id	sub-101407201		
更新履歴	20100323新規		
授業科目名	ロボット工学 Robotics		
担当教員名	吉野龍太郎 YOSHINO Ryutaro		
対象クラス	制御情報工学科5年生		
	2学修単位(自学自習を含め90時間の学修をもって2単位とする)		
必修/選択	選択		
	後期		
授業区分	基礎・専門工学系		
授業形態	講義		
	機械工学棟2Fロボット工学実験室または制御情報工学科5年ホームルーム		

授業の概要(本教科の工学的、社会的あるいは産業的意味) ロボットの運動制御の基礎について学ぶ。主に多関節ロボットの運動制御のための基礎理論について講義する。講義に関する課題を出題し次回までレポートを提 準備学習(この授業を受講するときに前提となる知識) 高等学校程度の数学とニュートン力学の知識

同サース住及の数子とニュードンガーの知識						
	Weight	目標				
		Α	工学倫理の自覚と多面的考察力の養成			
		В	社会要請に応えられる工学基礎学力の養成			
	0	С	工学専門知識の創造的活用能力の養成			
習・教育目		D	国際的な受信・発信能力の養成			
		E	産業現場における実務への対応能力と、自覚的に自己研鑚を継続できる能力の養成			

C:工学的な解析・分析力、及びそれらを創造的に統合する能力

学習・教育目標の達成度検査

- 1. 該当する学習・教育目標についての達成度検査を、試験を持って行う 2. プログラム教科目の修得と目標達成度試験の合格を持って当該する学習教育目標の達成とする。

授業目標

- 1. ロボットの手先軌道、運動方程式を導出できる。 2. ロボットの制御方法を理解する。

授業計画(7	プログラム授業は原則として	プログラム教員が自由に参観でますが、参観欄に×印がある回は参観できません。)	
	メインテーマ	サブテーマ	参観
第1回	ロボットとは	概論	
第2回	剛体の運動	並進運動・回転運動	
第3回	剛体の運動	演習	
第4回	第1回試験		
第5回	電動モータの制御	電流制御、速度制御、位置制御	
第6回	ロボットの運動学	座標変換・順運動学・逆運動学	
第7回	ロボットの運動学	軌道生成	
第8回	第2回試験		
第9回	ロボットの動力学	ニュートン・オイラー方程式	
第10回	動的制御	計算トルク制御	
第11回	動的制御	演習	
第12回	動的制御	関節角制御	
第13回	動的制御	サーボ系を含む動力学・軌道生成	
第14回	第3回試験		
第15回	まとめ	アンケート	

課題 自学自習課題として適宜提出させる。 出典:演習の遣り残し、あるいは発展問題 提出期限:出題した次の週

提出場所:授業開始直後の教室、 オフィスアワー::16:20~17:00

評価方法と基準 評価方法:

授業目標を試験と学習態度で評価する。

評価基準: -+st-7 0 & 学習能度(出席, <u>レポート提出)3 0 %</u>

試験 / 0%, =	子省態度(出席, レホート提出)30%				
教科書等	川嶋 健嗣著 絵ときでわかるロボット工学 オーム社				
先修科目	メカトロニクス、自動制御、計測工学、工学実験				
関連サイト					
授業アン	ハッキリと明瞭に説明する。プロジェクタを多用する.文字を丁寧に整理して書く				
借金	1.試験や課題レポート等は、JABEE 、大学評価・学位授与機構、文部科学省の教育実施検査に使用することがあります。				
	2.ロボット展等の展示会・技術発表会に参加する場合あり(交通費等は自己負担 1.回数千円程度)				